NM INSTITUTE OF ENGINEERING & TECHNOLOGY BHUBANESWAR

Mechanical Engineering Department

LESSON PLAN Session 2022-2023

Semester: 3RD

Subject: STRENGTH OF MATERIAL

Faculty Name: RABINARAYAN BAG

Subject: SOM

Semester from date: 15/09/2022 to date: 21/01/2023 No. of Weeks: 15

Week	Class Day	Theory topics
1	1	Introduction to Simple stress & strain.
	2	Types of load, stresses & strains,(Axial and tangential) Hooke's law.
	3	Young's modulus, bulk modulus
	4	Derive the relation between three elastic constants.
2	1	Principle of super position.
	2	Stresses in composite section.
	3	Temperature stress, determine the temperature stress in composite bar (single core).
	4	Strain energy and resilience.
3	1	Stress due to gradually applied, suddenly applied and impact load.
	2	Simple problems on above.
	3	Introduction to Thin cylinder.
	4	Introduction to spherical shell under internal pressure.
4	1	Definition of hoop and longitudinal stress, strain
	2	Derivation of hoop stress, longitudinal stress, hoop strain,
	3	Derivation of longitudinal strain and volumetric strain.
	4	Solving previous year questions.
5	1	Computation of the change in length, diameter and volume
	2	Solving Simple problems on above
	3	Introduction to Two dimensional stress systems.
	4	Determination of normal stress on oblique plane.
6	1	Determination of shear stress on oblique plane.
	2	Determination of resultant stress on oblique plane.
	3	Derive Location of principal plane
	4	Computation of principal stress.
7	1	Location of principal plane and computation of principal stress.
	2	Computation of Maximum shear stress using Mohr's circle.
	3	Solving previous year questions.
	4	Introduction to Bending moment.

Subject: SOM

Semester from date: 15/09/2022 to date: 21/01/2023

No. of Weeks: 15 Week **Class Day** Theory topics 8 Introduction to shear force. 1 Types of beam and load 2 3 Concepts of Shear force and bending moment. 4 Explain about SF & BM Diagram. Shear Force and Bending moment diagram and its salient features 9 1 illustration in cantilever beam. Cantilever beam with point load. 2 Cantilever beam with uniformly distributed load. 3 Simply supported beam under point load. 4 Simply supported beam under uniformly distributed load. 1 10 Over hanging beam under point load. 2 Over hanging beam under uniformly distributed load. 3 Solving previous year questions. 4 Introduction to Theory of simple bending. 11 1 2 Assumptions in the theory of bending. Derivation of bending equation. 3 4 Derive position of neutral axis. 1 Moment of resistance 12 2 Section modulus Bending stress in symmetrical section. 3 Solving previous year questions. 4 Introduction to Combined direct & bending stresses. 1 13 Define column 2 Eccentric loading. 3 4 Axial load on column. 14 1 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above 2 Buckling load computation using Euler's formula in Columns with 3 various end conditions(no derivation) Assumption of pure torsion. 4 The torsion equation for solid circular shaft. 15 1 The torsion equation for hollow circular shaft. 2 Comparison between solid and hollow shaft subjected to pure 3 torsion.

Solving previous year questions.

4

